

EPA Vapor Intrusion Workshop

Measurement-Based Methods for Protective & Defensible Chlorinated VI Exposure Determinations

Review of the North Island Site, San Diego, CA IECC Zone 3(C)

Chase Holton, Ph.D., P.E.(co), Geosyntec

35th Annual International Conference on Soils, Sediments, Water, and Energy, Amherst, Massachusetts, October 22nd, 2019

References

 Hosangadi, V., B. Shaver, B. Hartman, M. Pound, M. L. Kram, and C. Frescura. 2017. High-Frequency Continuous Monitoring to Track Vapor Intrusion Resulting from Naturally Occurring Pressure Dynamics. *Remediation*, 27(2), 9-25.

Case Study: Hosangadi et al., 2017

- Southern California site, adjacent to San Diego Bay
- Depth to water ~24 feet below ground surface
- TCE release below Building 379, Naval Air Station, North Island
 - Groundwater concentrations as high as 100 mg/L
 - Subslab soil gas concentrations as high as 6,000,000 $\mu g/m^3$

Building 379

- Built in 1940s
- 172,000 ft², two levels, 60 ft high
- Industrial use, including machining and carpentry
- Slab in poor condition, numerous floor drains present
- Older ventilation systems; some permanently open windows and other wall openings
- No TCE used in the building

— Pressure Differential

Case Study: Hosangadi et al., 2017

TCE vs. Pressure Differential, Women's Restroom

Case Study: Hosangadi et al., 2017

Pressure Differential

Case Study: Hosangadi et al., 2017

Case Study: Hosangadi et al., 2017

------Wind Speed

Case Study: Hosangadi et al., 2017

Case Study: Hosangadi et al., 2017

Summary and Conclusions

- Real-time indoor air concentration monitoring in Building 379 allowed for evaluation of temporal trends
- Observed correlation between indoor air TCE concentrations and trends with differential pressures, barometric pressures, wind speeds, and tides

Need more information?

Mark Kram, Ph.D., CGWP

Mark.Kram@groundswelltech.com, www.groundswelltech.com

Blayne Hartman, Ph.D.

Blayne@hartmaneg.com, www.hartmaneg.com